De novo KCNB1 mutations in infantile epilepsy inhibit repetitive neuronal firing
نویسندگان
چکیده
The voltage-gated Kv2.1 potassium channel encoded by KCNB1 produces the major delayed rectifier potassium current in pyramidal neurons. Recently, de novo heterozygous missense KCNB1 mutations have been identified in three patients with epileptic encephalopathy and a patient with neurodevelopmental disorder. However, the frequency of KCNB1 mutations in infantile epileptic patients and their effects on neuronal activity are yet unknown. We searched whole exome sequencing data of a total of 437 patients with infantile epilepsy, and found novel de novo heterozygous missense KCNB1 mutations in two patients showing psychomotor developmental delay and severe infantile generalized seizures with high-amplitude spike-and-wave electroencephalogram discharges. The mutation located in the channel voltage sensor (p.R306C) disrupted sensitivity and cooperativity of the sensor, while the mutation in the channel pore domain (p.G401R) selectively abolished endogenous Kv2 currents in transfected pyramidal neurons, indicating a dominant-negative effect. Both mutants inhibited repetitive neuronal firing through preventing production of deep interspike voltages. Thus KCNB1 mutations can be a rare genetic cause of infantile epilepsy, and insufficient firing of pyramidal neurons would disturb both development and stability of neuronal circuits, leading to the disease phenotypes.
منابع مشابه
Clinical features and outcome of 6 new patients carrying de novo KCNB1 gene mutations
Objective To describe electroclinical features and outcome of 6 patients harboring KCNB1 mutations. Methods Clinical, EEG, neuropsychological, and brain MRI data analysis. Targeted next-generation sequencing of a 95 epilepsy gene panel. Results The mean age at seizure onset was 11 months. The mean follow-up of 11.3 years documented that 4 patients following an infantile phase of frequent se...
متن کاملDe novo KCNB1 mutations in epileptic encephalopathy.
OBJECTIVE Numerous studies have demonstrated increased load of de novo copy number variants or single nucleotide variants in individuals with neurodevelopmental disorders, including epileptic encephalopathies, intellectual disability, and autism. METHODS We searched for de novo mutations in a family quartet with a sporadic case of epileptic encephalopathy with no known etiology to determine t...
متن کاملA novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy
Rare de novo mutations of sodium channels are thought to be an important cause of sporadic epilepsy. The well established role of de novo mutations of sodium channel SCN1A in Dravet Syndrome supports this view, but the etiology of many cases of epileptic encephalopathy remains unknown. We sought to identify the genetic cause in a patient with early onset epileptic encephalopathy by whole exome ...
متن کاملA novel epileptic encephalopathy mutation in KCNB1 disrupts Kv2.1 ion selectivity, expression, and localization
The epileptic encephalopathies are a group of highly heterogeneous genetic disorders. The majority of disease-causing mutations alter genes encoding voltage-gated ion channels, neurotransmitter receptors, or synaptic proteins. We have identified a novel de novo pathogenic K+ channel variant in an idiopathic epileptic encephalopathy family. Here, we report the effects of this mutation on channel...
متن کاملSodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability
The sodium channel Nav1.6, encoded by the gene SCN8A, is one of the major voltage-gated channels in human brain. The sequences of sodium channels have been highly conserved during evolution, and minor changes in biophysical properties can have a major impact in vivo. Insight into the role of Nav1.6 has come from analysis of spontaneous and induced mutations of mouse Scn8a during the past 18 yea...
متن کامل